Operations on Functions and Polynomials.

We know about ARITHMETIC operations, such as $+ - \times \div$

You can also perform a composition of functions as well.

Composing functions involved "plugging one function into another one".

Composition of functions is symbolized with an open circle: •

A composition of some function, f(x) and a function, g(x) is written: $(f \circ g)(x)$

 $(f \circ g)(x)$ is read as "f of g of x" and means f(g(x))(x)

Graphically, this looks like: $x \xrightarrow{g(x)} f(x) \xrightarrow{f(x)} f(x)$ The function g(x) is plugged into f(x).

{The range of the function g(x) is the domain of the function f(x)}

So what does this mean in real life:

Ex:
$$f(x) = x + 4$$
, $g(x) = 4x - 1$, find $(f \circ g)(x)$
 $(f \circ g)(x) = f(g(x)) = so f(4x - 1)$ replace EVERY x in f(x) with $(4x - 1)$
 $f(x) = x + 4$ $f(4x - 1) = (4x - 1) + 4 = 4x + 3$ $(f \circ g)(x) = 4x + 3$

Note:

$$(f \circ g)(x) \neq (g \circ f)(x) \text{ usually.}$$

$$(g \circ f)(x) = g(f(x)) = so \ g(x+4) \qquad \text{replace EVERY x in } g(x) \text{ with } (x+4)$$

$$g(x) = 4x - 1 \qquad g(x+4) = 4(x+4) - 1 = 4x + 16 - 1 \qquad (g \circ f)(x) = 4x + 15$$

$$\text{Ex 2: } f(x) = x^2 + 1, \ g(x) = 2 - x, \ find \ (f \circ g)(x)$$

$$(f \circ g)(x) = f(g(x)) = f(2-x) = (2-x)^2 + 1 = (4 - 2x + x^2) + 1 = x^2 - 2x + 5$$

Evaluating a composition of functions is even easier.

Ex 3:
$$f(x) = x^2$$
, $g(x) = 2x + 3$, find $(f \circ g)(1)$
 $(f \circ g)(1) = f(g(1))$ Since $g(1) = 2(1) + 3 = 5$, $f(g(1)) = f(5) = (5)^2 = 25$
Ex 4: $f(x) = x + 4$, $g(x) = 2x + 3$, $h(x) = 2 + x^2$ find $(g \circ h \circ f)(1)$
 $(g \circ h \circ f)(1) = g(h(f(1)))$ $f(1) = 1 + 4 = 5$ $h(5) = 2 + 5^2 = 27$ $g(27) = 2(27) + 3 = 57$